Profil
Mes achats
Découvrez plus de 300 000 ebooks aux formats pdf epub, audio en telechargement ou en lecture streaming. Nous vous avons sélectionné nos coups de cœur toutes categories confondues et mettons en avant l'actualité de la litterature française et internationale.
voir toutes les nouveautés
Nouveautés de la semaine
Recherche avancée
This handbook discusses challenges and limitations in existing solutions, and presents state-of-the-art advances from both academia and industry, in big data analytics and digital forensics. The second chapter comprehensively reviews IoT security, privacy, and forensics literature, focusing on IoT and unmanned aerial vehicles (UAVs). The authors propose a deep learning-based approach to process cloud’s log data and mitigate enumeration attacks in the third chapter. The fourth chapter proposes a robust fuzzy learning model to protect IT-based infrastructure against advanced persistent threat (APT) campaigns. Advanced and fair clustering approach for industrial data, which is capable of training with huge volume of data in a close to linear time is introduced in the fifth chapter, as well as offering an adaptive deep learning model to detect cyberattacks targeting cyber physical systems (CPS) covered in the sixth chapter.
The authors evaluate the performance of unsupervised machine learning for detecting cyberattacks against industrial control systems (ICS) in chapter 7, and the next chapter presents a robust fuzzy Bayesian approach for ICS’s cyber threat hunting. This handbook also evaluates the performance of supervised machine learning methods in identifying cyberattacks against CPS. The performance of a scalable clustering algorithm for CPS’s cyber threat hunting and the usefulness of machine learning algorithms for MacOS malware detection are respectively evaluated.
This handbook continues with evaluating the performance of various machine learning techniques to detect the Internet of Things malware. The authors demonstrate how MacOSX cyberattacks can be detected using state-of-the-art machine learning models. In order to identify credit card frauds, the fifteenth chapter introduces a hybrid model. In the sixteenth chapter, the editors propose a model that leverages natural language processing techniques for generating a mapping between APT-related reports and cyber kill chain. A deep learning-based approach to detect ransomware is introduced, as well as a proposed clustering approach to detect IoT malware in the last two chapters.
This handbook primarily targets professionals and scientists working in Big Data, Digital Forensics, Machine Learning, Cyber Security Cyber Threat Analytics and Cyber Threat Hunting as a reference book. Advanced level-students and researchers studying and working in Computer systems, Computer networks and Artificial intelligence will also find this reference useful.
Les livres numériques peuvent être téléchargés depuis l'ebookstore Numilog ou directement depuis une tablette ou smartphone.
PDF : format reprenant la maquette originale du livre ; lecture recommandée sur ordinateur et tablette EPUB : format de texte repositionnable ; lecture sur tous supports (ordinateur, tablette, smartphone, liseuse)
DRM Adobe LCP
LCP DRM Adobe
Ce livre est protégé contre la rediffusion à la demande de l'éditeur (DRM).
La solution LCP apporte un accès simplifié au livre : une clé d'activation associée à votre compte client permet d'ouvrir immédiatement votre livre numérique.
Les livres numériques distribués avec la solution LCP peuvent être lus sur :
La solution Adobe consiste à associer un fichier à un identifiant personnel (Adobe ID). Une fois votre appareil de lecture activé avec cet identifiant, vous pouvez ouvrir le livre avec une application compatible.
Les livres numériques distribués avec la solution Adobe peuvent être lus sur :
mobile-and-tablet Pour vérifier la compatibilité avec vos appareils,consultez la page d'aide
Restez informé(e) des événements et promotions ebook
Paiements sécurisés