Détails
Auteur
Collection
n.c
Parution
2023-09-19
Pages
892 pages
EAN papier
9780443134883
Langue
Anglais
Informations ebook
EAN PDF
9780443134890
Prix
327,05 €
En savoir plus
Nb pages copiables 89
Nb pages imprimables 89
Taille du fichier 16128 Ko
Compatibilité

mobile-and-tablet Pour vérifier la compatibilité avec vos appareils,
consultez la page d'aide

Auteur(s) du livre


Hao Huang, PhD, Professor, School of Materials Science and Engineering, Dalian University of Technology; Director, Key Laboratory of Energy Materials and Devices, Liaoning Province; Director, Experimental Center of Materials Science and Engineering, Dalian University of Technology. Doctorate in 2001-2005 from Changwon National University, Korea; In 2003, he worked as a member of the Korea Institute of Materials Science (KIMS) and the United States Massachusetts Institute of Technology (MIT) Composite Cooperation Research Group. He joined the Dalian University of Technology in 2005 and taught the doctoral course 'Energy Materials and Devices' for many years. In 2018, He established the Key Laboratory of Energy Materials & Devices (Liaoning Province). Professor Hao Huang has been committed to the research on the basic science and application technology of energy storage nanomaterials, which has brought breakthroughs to the bottleneck problems in the field of new energy materials, mainly including: (1) Macro fabrication and fine micro-structure control of nanoparticles. He designed the mass production equipment of nanoparticles by arc discharge method. The macro fabrication of multi-type nanoparticles is realized. He clarified the growth mechanism of nanoparticles in the plasmatic environment, and established the structure-activity relationship between the structural characteristics and electrochemical performance. (2) high-density and long-term energy storage of the nanoparticles. The core-shell nanostructure was designed to prevent the pulverization failure caused by volume expansion of the electrode nanomaterials during cyclic energy storage. (3) Correlation between the defect/surface structure of nanoparticles and the electrochemical reactions. The first-principles calculation and experiments are effectively combined to investigate the correlation between the defect/surface structure characteristics of nanoparticles and electrochemical reactions, providing an accurate scientific basis and effective data for the design and screening of new electrode materials. The author published 3 books including "Key Materials for High-Performance Battery (Science Press, China), and reported 108 academic papers in academic journals. The research results have been highly affirmed and recognized by experts in this field and research institutions. Over the past decade, more than 100 Ph.D and MA. students have been graduated from his lab and obtained important positions in the industries of advanced energy materials.
Avis clients

Suggestions personnalisées

Restez informé(e) des événements et promotions ebook

Paiements sécurisés

Paiements sécurisés