Profil
Mes achats
Découvrez plus de 300 000 ebooks aux formats pdf epub, audio en telechargement ou en lecture streaming. Nous vous avons sélectionné nos coups de cœur toutes categories confondues et mettons en avant l'actualité de la litterature française et internationale.
voir toutes les nouveautés
Nouveautés de la semaine
Recherche avancée
Perception, Action, and Learning
In recent years, embodied multi-agent systems, including multi-robots, have emerged as essential solution for demanding tasks such as search and rescue, environmental monitoring, and space exploration. Effective collaboration among these agents is crucial but presents significant challenges due to differences in morphology and capabilities, especially in heterogenous systems. While existing books address collaboration control, perception, and learning, there is a gap in focusing on active perception and interactive learning for embodied multi-agent systems.
This book aims to bridge this gap by establishing a unified framework for perception and learning in embodied multi-agent systems. It presents and discusses the perception-action-learning loop, offering systematic solutions for various types of agents—homogeneous, heterogeneous, and ad hoc. Beyond the popular reinforcement learning techniques, the book provides insights into using fundamental models to tackle complex collaboration problems.
By interchangeably utilizing constrained optimization, reinforcement learning, and fundamental models, this book offers a comprehensive toolkit for solving different types of embodied multi-agent problems. Readers will gain an understanding of the advantages and disadvantages of each method for various tasks. This book will be particularly valuable to graduate students and professional researchers in robotics and machine learning. It provides a robust learning framework for addressing practical challenges in embodied multi-agent systems and demonstrates the promising potential of fundamental models for scenario generation, policy learning, and planning in complex collaboration problems.
Les livres numériques peuvent être téléchargés depuis l'ebookstore Numilog ou directement depuis une tablette ou smartphone.
PDF : format reprenant la maquette originale du livre ; lecture recommandée sur ordinateur et tablette EPUB : format de texte repositionnable ; lecture sur tous supports (ordinateur, tablette, smartphone, liseuse)
DRM Adobe LCP
LCP DRM Adobe
Ce livre est protégé contre la rediffusion à la demande de l'éditeur (DRM).
La solution LCP apporte un accès simplifié au livre : une clé d'activation associée à votre compte client permet d'ouvrir immédiatement votre livre numérique.
Les livres numériques distribués avec la solution LCP peuvent être lus sur :
La solution Adobe consiste à associer un fichier à un identifiant personnel (Adobe ID). Une fois votre appareil de lecture activé avec cet identifiant, vous pouvez ouvrir le livre avec une application compatible.
Les livres numériques distribués avec la solution Adobe peuvent être lus sur :
mobile-and-tablet Pour vérifier la compatibilité avec vos appareils,consultez la page d'aide
Huaping Liu received his Ph.D. degree from Tsinghua University, Beijing, China, in 2004. He is currently a professor in the Department of Computer Science and Technology at Tsinghua University. His research interests include robot perception and learning. Dr. Liu received the National Science Fund for Distinguished Young Scholars and served as the Area Chair for Robotics Science and Systems multiple times. He is a senior editor of the International Journal of Robotics Research. Dr. Liu published the book “Robotic Tactile Perception and Understanding” with Springer in 2018.
Xinzhu Liu received her Ph.D. degree in computer science and technology from Tsinghua University, Beijing, China, in 2024. Her research interests include embodied intelligence, visual perception, and multi-agent collaboration.
Kangyao Huang received his M.Res. in Control and Systems Engineering from the University of Sheffield, Sheffield, U.K., in 2020. He is currently pursuing a Ph.D. degree in computer science and technology at Tsinghua University, Beijing, China. He has interdisciplinary experience and several years of industry experience, providing applied research in cooperation with partners in the information, aerospace, and manufacturing sectors. His research interests include robot learning and swarm robotics.
Di Guo received her Ph.D. degree in Computer Science and Technology from Tsinghua University, Beijing, China, in 2017. She is currently a professor in the School of Artificial Intelligence at Beijing University of Posts and Telecommunications, Beijing. Her research interests include intelligent robots, computer vision, and machine learning.
Restez informé(e) des événements et promotions ebook
Paiements sécurisés