Profil
Mes achats
Découvrez plus de 300 000 ebooks aux formats pdf epub, audio en telechargement ou en lecture streaming. Nous vous avons sélectionné nos coups de cœur toutes categories confondues et mettons en avant l'actualité de la litterature française et internationale.
voir toutes les nouveautés
Nouveautés de la semaine
Recherche avancée
Foundation and Advances
This book presents a comprehensive range of topics in deep learning for polymer discovery, from fundamental concepts to advanced methodologies. These topics are crucial as they address critical challenges in polymer science and engineering. With a growing demand for new materials with specific properties, traditional experimental methods for polymer discovery are becoming increasingly time-consuming and costly. Deep learning offers a promising solution by enabling rapid screening of potential polymers and accelerating the design process. The authors begin with essential knowledge on polymer data representations and neural network architectures, then progress to deep learning frameworks for property prediction and inverse polymer design. The book then explores both sequence-based and graph-based approaches, covering various neural network types including LSTMs, GRUs, GCNs, and GINs. Advanced topics include interpretable graph deep learning with environment-based augmentation, semi-supervised techniques for addressing label imbalance, and data-centric transfer learning using diffusion models. The book aims to solve key problems in polymer discovery, including accurate property prediction, efficient design of polymers with desired characteristics, model interpretability, handling imbalanced and limited labeled data, and leveraging unlabeled data to improve prediction accuracy.
Les livres numériques peuvent être téléchargés depuis l'ebookstore Numilog ou directement depuis une tablette ou smartphone.
PDF : format reprenant la maquette originale du livre ; lecture recommandée sur ordinateur et tablette EPUB : format de texte repositionnable ; lecture sur tous supports (ordinateur, tablette, smartphone, liseuse)
DRM Adobe LCP
LCP DRM Adobe
Ce livre est protégé contre la rediffusion à la demande de l'éditeur (DRM).
La solution LCP apporte un accès simplifié au livre : une clé d'activation associée à votre compte client permet d'ouvrir immédiatement votre livre numérique.
Les livres numériques distribués avec la solution LCP peuvent être lus sur :
La solution Adobe consiste à associer un fichier à un identifiant personnel (Adobe ID). Une fois votre appareil de lecture activé avec cet identifiant, vous pouvez ouvrir le livre avec une application compatible.
Les livres numériques distribués avec la solution Adobe peuvent être lus sur :
mobile-and-tablet Pour vérifier la compatibilité avec vos appareils,consultez la page d'aide
Gang Liu is a 4th year Ph.D. student in the Department of Computer Science and Engineering at the University of Notre Dame. His research focuses on graph and generative learning for polymeric material discovery. He has over ten publications in top data mining and machine learning venues, including KDD, NeurIPS, ICML, DAC, ACL, TKDE, and TKDD. His methods have contributed to the discovery of new polymers, with findings published in Cell Reports Physical Science and secured by a provisional patent. He receives the 2024-2025 IBM PhD Fellowship for his work on Foundation Models.
Eric Inae is a 3rd year Ph.D. student in the Department of Computer Science and Engineering at the University of Notre Dame. He received his B.S. in Computer Science and B.S in Mathematics from Andrews University in 2022. His research emphasis is in graph machine learning with applications in material discovery and polymer science. He was awarded with the Dean’s Fellowship from the University of Notre Dame.
Meng Jiang, Ph.D., is an Associate Professor in the Department of Computer Science and Engineering at the University of Notre Dame. He received his B.E. and Ph.D. from Tsinghua University. He was a visiting scholar at Carnegie Mellon University and a postdoc at the University of Illinois Urbana-Champaign. He is interested in data mining, machine learning, and natural language processing. His data science research focuses on graph and text data for applications such as material discovery, question answering, user modeling, online education, and mental healthcare. He received the CAREER Award from the National Science Foundation and is a Senior Member of ACM and IEEE.
Restez informé(e) des événements et promotions ebook
Paiements sécurisés