Profil
Mes achats
Découvrez plus de 300 000 ebooks aux formats pdf epub, audio en telechargement ou en lecture streaming. Nous vous avons sélectionné nos coups de cœur toutes categories confondues et mettons en avant l'actualité de la litterature française et internationale.
voir toutes les nouveautés
Nouveautés de la semaine
Recherche avancée
The subject of this book centres
around trustworthy machine learning under imperfect data. It is primarily designed for
scientists, researchers, practitioners, professionals, postgraduates and
undergraduates in the
field of machine learning and artificial intelligence. The book focuses
on trustworthy deep learning under various types of imperfect data, including
noisy labels, adversarial examples, and out-of-distribution data. It covers
trustworthy machine learning algorithms, theories, and systems.
The main goal of the book is to provide students and researchers in academia with an
unbiased and comprehensive literature review. More importantly, it aims to stimulate
insightful discussions about the future of trustworthy machine learning. By engaging the audience
in more in-depth conversations, the book intends to spark ideas for addressing core
problems in this topic. For example, it will explore how to build up benchmark datasets in
noisy-supervised learning, how to tackle the emerging adversarial learning, and
how to tackle out-of-distribution detection.
For practitioners in the industry,
this book will present state-of-the-art trustworthy machine learning methods to
help them solve real-world problems in different scenarios, such as online
recommendation and web search. While the book will introduce the basics of
knowledge required, readers will benefit from having some familiarity with
linear algebra, probability, machine learning, and artificial intelligence. The
emphasis will be on conveying the intuition behind all formal concepts,
theories, and methodologies, ensuring the book remains self-contained at a high
level.
Les livres numériques peuvent être téléchargés depuis l'ebookstore Numilog ou directement depuis une tablette ou smartphone.
PDF : format reprenant la maquette originale du livre ; lecture recommandée sur ordinateur et tablette EPUB : format de texte repositionnable ; lecture sur tous supports (ordinateur, tablette, smartphone, liseuse)
DRM Adobe LCP
LCP DRM Adobe
Ce livre est protégé contre la rediffusion à la demande de l'éditeur (DRM).
La solution LCP apporte un accès simplifié au livre : une clé d'activation associée à votre compte client permet d'ouvrir immédiatement votre livre numérique.
Les livres numériques distribués avec la solution LCP peuvent être lus sur :
La solution Adobe consiste à associer un fichier à un identifiant personnel (Adobe ID). Une fois votre appareil de lecture activé avec cet identifiant, vous pouvez ouvrir le livre avec une application compatible.
Les livres numériques distribués avec la solution Adobe peuvent être lus sur :
mobile-and-tablet Pour vérifier la compatibilité avec vos appareils,consultez la page d'aide
Prof. Bo Han is an Assistant Professor
in Machine Learning at Hong Kong Baptist University and a BAIHO Visiting
Scientist at RIKEN AIP, where his research focuses on machine learning, deep
learning, foundation models and their applications. He was a Visiting Faculty Researcher
at Microsoft Research and a Postdoc Fellow at RIKEN AIP. He has co authored a
machine learning monograph by MIT Press. He has served as Area Chairs of
NeurIPS, ICML, ICLR and UAI. He has also served as Action Editors and Editorial
Board Members of JMLR, MLJ, JAIR, TMLR and IEEE TNNLS. He received the
Outstanding Paper Award at NeurIPS and Outstanding Area Chair at ICLR. He
received the RIKEN BAIHO Award (2019), RGC Early CAREER Scheme (2020),
Microsoft Research StarTrack Program (2021), and Tencent AI Faculty Research
Award (2022).
Prof. Tongliang Liu is the Director of
Sydney AI Centre at University of Sydney, Australia; a Visiting Professor of
University of Science and Technology of China, Hefei, China; a Visiting
Scientist of RIKEN AIP, Tokyo, Japan; and a Visiting Associate Professor at
Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab
Emirates. He has published more than 100 papers at leading ML/AI conferences
and journals. He is regularly the meta reviewer of ICML, NeurIPS, ICLR, UAI,
IJCAI, and AAAI. He is the Action Editor of Transactions on Machine Learning
Research, Associate Editor of ACM Computing Surveys, and in the Editorial Board
of Journal of Machine Learning Research and the Machine Learning journal. He
received the ARC DECRA Award in 2018, ARC Future Fellowship Award in 2022, and
IEEE AI's 10 to Watch Award in 2023. He also received multiple faculty awards,
e.g., from OPPO and Meituan.
Restez informé(e) des événements et promotions ebook
Paiements sécurisés